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Background: Bayesian probit regression

o (Model). Given independent binary data yi, ..., y, from a probit
regression model y; | B ~ Bern[®(x! 3)], for i = 1,...,n with prior
B ~ N, (&, Q) and ¢ denoting the cumulative distribution function
(CDF) of a standard normal distribution.

o (Posterior.) Denoting ¢, the density of zero mean normal
distribution with variance €2, we have

p(Bly) = (B — & Q) [[L, @(xI'B)Yi(1 — o(xI'B))L-vi
Jer 2p(B— & Q) [T, 2(xIB)¥i(1 — ®(xI'B))' ~v:dB
@ (Question.) Markov Chain Monte Carlo (MCMC) sampling is slow.

Q1: Do we have a conjugate prior? Q2: Is the computation scalable?
Q3: Can we extend the results to other relevant models?
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-
Conjugacy by the unified skewed-normal distribution (SUN)

@ Denoting the SUN density 8 ~ SUN, 4(&,Q, A,~,T) with £ € RP, 2 € RY,
A ~RPY v €R? and T' € R™™ full rank matrix [Chen et al., 2016], with density

Ooly + ATQ I B E:T - ATOTIA) )
Qq(v;T)

where Q = wQw is a covariance matrix, with Q being a correlation matrix and w
being a diagonal matrix for squared root of the diagonal values of €.

@ For the probit model, y; | 3 ~ Bern[®(x¥'3)], for i = 1,...,n with prior
B ~ N, (&, ), the posterior follows [Durante, 2019]

B|y~SUN,,(&Q 0wD s ! s 'D¢,s  (DOAD” +1,)s 1),

where a n X p matrix D = diag(2y1 — 1, ..., 2y, — 1)X and a n x n diagonal
matrix s = [(DQDT +1,)0 In] 2 ith ® denoting the elementwise product.
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Conjugacy by the unified skewed-normal distribution (SUN)

@ Denoting the SUN density 8 ~ SUN, 4(&,Q, A,~,T) with £ € RP, 2 € RY,
A ~RPY v €R? and T' € R™™ full rank matrix [Chen et al., 2016], with density

By(y + ATO o~ (B - )T — ATAIA)

y(wiT) ()

where Q = wQw is a covariance matrix, with Q being a correlation matrix and w
being a diagonal matrix for squared root of the diagonal values of €.

@ For the probit model, y; | B ~ Bern[CI)(xiTﬁ)], fori =1,...,n with prior
B ~ N, (&, ), the posterior follows [Durante, 2019]

B|y~SUN,,(&Q 0wD s ! s 'D¢,s  (DOAD” +1,)s 1),
where a n X p matrix D = diag(2y1 — 1, ...,2y» — 1)X and a n x n diagonal
matrix s = [(DOQD” +1,,) © L, 2 ith ® denoting the elementwise product.

@ Answer to Q1: Yes, we have conjugacy.

@ Many nice properties: e.g. normalizing constant and mode of posteriors of SUN
can be computed; sampling distribution can be constructed; predictive
distributions, linear combination, and conditional distributions are all SUN.
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|
Computational challenge and data augmentation
@ Computational challenge. The SUN density involves computing a CDF of
multivariate normal of n dimensions which may contain O(n?) operations

(due to computing the Cholesky factor of the covariance). Furthermore,
sampling requires n-variate truncated normals [Botev, 2017].
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Computational challenge and data augmentation

@ Computational challenge. The SUN density involves computing a CDF of
multivariate normal of n dimensions which may contain O(n?) operations
(due to computing the Cholesky factor of the covariance). Furthermore,
sampling requires n-variate truncated normals [Botev, 2017].

@ Data augmentation. For probit regression models, data augmentation
[Albert and Chib, 1993] has been widely used in MCMC and variational
Bayes:

Yi = ]]-Zi>07 (ZZ | ﬁ) ~ N(X,ZT;37 1)7 and ﬁ ~ NP(07V51p)a
where the conditional posterior follows
(B z,y)=N,(VX"2, V),V = (v, °T, + X"X) "

)
TN[xIB,1,(0, +0)], ify; =1,
(Zi |/87Z—i7y)N [ ;“ ( )] . Yi
TN[x; 8,1, (=00, 0)], ify; =0,
fori =1,...,n. Note: it may need O(p?) operations for
factorization /inversion of a p x p matrix (supposing n > p and V s full
rank), but it only needs to be done once.
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|
Variational Bayes (VB)

One answer to Q2:

@ (VB with mean field family). Consider mean field family garr(z, 8) = q(2)q(3).
Then maximize

ELBO[qnr (B, 2)] := =K L[qmr (B, 2)|Ip(B, 2 | y)] + ¢,
through iterations [Blei et al., 2017]

a7 (8) = e [Eon  {logp(B | 2.3)}] .a0r(B) = exp [E ¢ {l0gp(z | B.¥)}]

which approximate p(3, z, | y) via a multivariate Gaussian ¢, (3) and a product
of truncated normals []"_; ¢asr(2i).
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|
Variational Bayes (VB)

One answer to Q2:

@ (VB with mean field family). Consider mean field family garr(z, 8) = q(2)q(3).
Then maximize

ELBO[qmr(B,2)] := —K L[gur(B,2)||[p(B,z | ¥)] + ¢,
through iterations [Blei et al., 2017]
a0r(B) = exp [E o {logp(B | 2,3}, a(r(8) = exp [E - {logn(z | B,3)}]
MF MF
which approximate p(3, z, | y) via a multivariate Gaussian ¢, (3) and a product
of truncated normals []7_, ¢hrr(2:).

@ (Inconsistency results). The expectation of La norm of posterior mean 8 with
respect to the mean field posterior converges to zero; while it increases at the rate
of y/n if the expectation is over the true posterior. Both assume p — co.

@ (VB with partially factorized family). A better solution seems to find the
solution within the family gpaxrr(z, 8) = p(B | z) [ 15—, gparr(2:), and the solution
guarantees of the convergence K L[qpr#(8)|[p(B | ¥)] 2 0, when p — oc.
Computational scalability for large p and large n?

Other approximation to multivariate normal CDF may include, e.g. low rank or
sparse approximation of the covariance, and expectation propagation [Minka.2013].
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Extension

Answers to Q3:

There are a large number of applications and extensions, including:
@ multivariate probit link,

@ binary data with a latent nonlinear function modeled by a Gaussian
process [Cao et al., 2022],

e model of binary time series by probit dynamic linear model [Fasano
et al., 2021],

@ skewed distribution as a more flexible class to use in approximation.
Other possible directions:

@ Objective prior or objective choice of prior parameters.

@ Computational scalable approaches for posterior credible interval of 3.

@ Variable selection when the number of covariates is large, or/and
when coefficients are time varying.

@ Approximation approaches on above extensions.

Mengyang Gu (UCSB) SUN IMSI 6/7



ThankS!
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