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Background: Bayesian probit regression

(Model). Given independent binary data y1, ..., yn from a probit
regression model yi | β ∼ Bern[Φ(xTi β)], for i = 1, ..., n with prior
β ∼ Np(ξ,Ω) and Φ denoting the cumulative distribution function
(CDF) of a standard normal distribution.

(Posterior.) Denoting φp the density of zero mean normal
distribution with variance Ω, we have

p(β | y) =
φp(β − ξ; Ω)

∏n
i=1 Φ(xTi β)yi(1− Φ(xTi β))1−yi∫

Rp φp(β − ξ; Ω)
∏n
i=1 Φ(xTi β)yi(1− Φ(xTi β))1−yidβ

(Question.) Markov Chain Monte Carlo (MCMC) sampling is slow.
Q1: Do we have a conjugate prior? Q2: Is the computation scalable?
Q3: Can we extend the results to other relevant models?
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Conjugacy by the unified skewed-normal distribution (SUN)

Denoting the SUN density β ∼ SUNp,q(ξ,Ω,∆,γ,Γ) with ξ ∈ Rp, Ω ∈ Rq,
∆ ∼ Rp,q, γ ∈ Rq, and Γ ∈ Rn,n full rank matrix [Chen et al., 2016], with density

p(β | ξ,Ω,∆,γ,Γ) = φp(β − ξ;Ω)
Φq(γ + ∆T Ω̄−1ω−1(β − ξ);Γ−∆T Ω̄−1∆)

Φq(γ;Γ)
(1)

where Ω = ωΩ̄ω is a covariance matrix, with Ω̄ being a correlation matrix and ω
being a diagonal matrix for squared root of the diagonal values of Ω.

For the probit model, yi | β ∼ Bern[Φ(xT
i β)], for i = 1, ..., n with prior

β ∼ Np(ξ,Ω), the posterior follows [Durante, 2019]

β | y ∼ SUNp,q(ξ,Ω, Ω̄ωDT s−1, s−1Dξ, s−1(DΩDT + In)s−1),

where a n× p matrix D = diag(2y1 − 1, ..., 2yn − 1)X and a n× n diagonal

matrix s =
[
(DΩDT + In)� In

]1/2
with � denoting the elementwise product.

Answer to Q1: Yes, we have conjugacy.

Many nice properties: e.g. normalizing constant and mode of posteriors of SUN
can be computed; sampling distribution can be constructed; predictive
distributions, linear combination, and conditional distributions are all SUN.
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Computational challenge and data augmentation

Computational challenge. The SUN density involves computing a CDF of
multivariate normal of n dimensions which may contain O(n3) operations
(due to computing the Cholesky factor of the covariance). Furthermore,
sampling requires n-variate truncated normals [Botev, 2017].

Data augmentation. For probit regression models, data augmentation
[Albert and Chib, 1993] has been widely used in MCMC and variational
Bayes:

yi = 1zi>0, (zi | β) ∼ N(xT
i β, 1), and β ∼ Np(0, ν2pIp),

where the conditional posterior follows

(β | z,y) = Np(VXT z,V),V = (ν−2
p Ip + XTX)−1,

(zi | β, z−i,y) ∼

{
TN[xT

i β, 1, (0, +∞)], if yi = 1,

TN[xT
i β, 1, (−∞, 0)], if yi = 0,

for i = 1, ..., n. Note: it may need O(p3) operations for
factorization/inversion of a p× p matrix (supposing n > p and V is full
rank), but it only needs to be done once.
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Variational Bayes (VB)

One answer to Q2:

(VB with mean field family). Consider mean field family qMF (z,β) = q(z)q(β).
Then maximize

ELBO[qMF (β, z)] := −KL[qMF (β, z)||p(β, z | y)] + c,

through iterations [Blei et al., 2017]

q
(t)
MF (β) = exp

[
E

q
(t−1)
MF

(z)
{log p(β | z,y)}

]
, q

(t)
MF (β) = exp

[
E

q
(t−1)
MF

(z)
{log p(z | β,y)}

]
,

which approximate p(β, z, | y) via a multivariate Gaussian q∗MF (β) and a product
of truncated normals

∏n
i=1 q

∗
MF (zi).

(Inconsistency results). The expectation of L2 norm of posterior mean β with
respect to the mean field posterior converges to zero; while it increases at the rate
of
√
n if the expectation is over the true posterior. Both assume p→∞.

(VB with partially factorized family). A better solution seems to find the
solution within the family qPMF (z,β) = p(β | z)

∏p
i=1 qPMF (zi), and the solution

guarantees of the convergence KL[q∗PMF (β)||p(β | y)]
p→ 0, when p→∞.

Computational scalability for large p and large n?

Other approximation to multivariate normal CDF may include, e.g. low rank or
sparse approximation of the covariance, and expectation propagation [Minka, 2013].
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Extension

Answers to Q3:
There are a large number of applications and extensions, including:

multivariate probit link,

binary data with a latent nonlinear function modeled by a Gaussian
process [Cao et al., 2022],

model of binary time series by probit dynamic linear model [Fasano
et al., 2021],

skewed distribution as a more flexible class to use in approximation.

Other possible directions:

Objective prior or objective choice of prior parameters.

Computational scalable approaches for posterior credible interval of β.

Variable selection when the number of covariates is large, or/and
when coefficients are time varying.

Approximation approaches on above extensions.
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Thanks!
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